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For unmanned aircraft to share airspace with manned aircraft, extensive testing is first 
required to ensure that such vehicles can fly safely with manned traffic. Safe operation 
includes not only avoiding collisions with other traffic but also complying with the Federal 
Aviation Regulations to remain “well clear” of other traffic. One method for investigating the 
safety of unmanned aircraft operations is fast-time Monte Carlo simulation of encounters 
between unmanned and manned aircraft. As part of that simulation, one must model how the 
pilots of unmanned aircraft react to the encounters. To that end, a stochastic model of realistic 
responses of unmanned aircraft pilots is being built. A preliminary model was formulated 
based on a review of existing literature on pilot decision-making, and Human-in-the-Loop 
experiments are being used to improve the model’s representation of unmanned pilot 
responses and parameterize its stochastics elements. This paper summarizes the first of those 
experiments, conducted in July 2015, and highlights key results that inform the pilot model. 

I. Introduction 
n 2012, Congress mandated that the Federal Aviation Administration establish rules for the integration of unmanned 
aircraft systems (UAS) into the National Airspace (NAS). Doing so requires the development of policies, procedures 

and equipment to ensure that operations within the NAS can be conducted safely. Existing aviation regulations require 
that aviators “see and avoid” nearby traffic. Without a pilot in the cockpit, unmanned aircraft rely on electronic 
surveillance systems to locate other air traffic and relay this information to the ground control station where the pilot 
observes and acts on it. The Air Force’s Common Airborne Sense and Avoid4 (C-ABSAA) program is developing 
and testing Detect and Avoid (DAA) technologies that will help the remote pilot fly the aircraft safely. Furthermore, 
the C-ABSAA program is supporting the work of the RTCA Special Committee 228 (SC-228) to identify minimum 
performance requirements of a DAA system. These initial minimum performance standards rely on the remote pilot 
to determine and execute an escape maneuver, rather than an automatically determined and executed maneuver 
response. 

A standard tool for testing the safety and effectiveness of these technologies and requirements is modeling and 
simulation. Fast-time Monte Carlo simulation facilitates cost-efficient testing of numerous equipment configurations, 
pilot responses, and encounter types. For these fast-time Monte Carlo simulations to address the effectiveness of DAA 
with a pilot-in-the-loop, one must model how unmanned pilots respond when encountering other air traffic. Safe 
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operation in the NAS includes not only avoiding a collision with another aircraft but also maintaining what is 
considered a safe distance from other aircraft—“well clear” in regulatory terms [1]. Maneuvering the unmanned 
aircraft to remain well clear gives the pilot much more leeway than an urgent collision situation, so the model of the 
pilot’s responses must address this decision-making process. 

A review of published literature [2-7] found little about the behavior of unmanned aircraft pilots which is not 
surprising given the relative novelty of such aircraft. There is, however, a relatively large body of work on the behavior 
of pilots of manned aircraft. Much of this literature outlines the results of human-in-the-loop laboratory experiments. 
The individual studies report disparate results, but synthesizing the results of these studies suggests the following 
maneuver preference trends:   

 
• Single-axis vertical or horizontal maneuvers (e.g., climb) are preferred over multi-axis maneuvers (e.g., 

climb and turn together). 
• Vertical maneuvers are preferred over horizontal maneuvers. 
• No preference between right and left turns regardless of right-of-way rules5. 
• Airspeed maneuvers are not preferred. 

 
One finding of interest by Thomas and Wickens [7] was that the method of controlling the ownship aircraft had a 

moderating influence on the preference for single-axis maneuvers and the preference for vertical maneuvers. Unlike 
most other studies, their experiment had pilots controlling their aircraft through a “strategic route planner” where 
rather than identifying how the aircraft should maneuver they were to edit the desired flight path by adding or changing 
waypoints. Some large unmanned aircraft such as the RQ-4 Global Hawk and its variants are flown in just this 
manner—the pilot in the ground control station has no traditional flight controls, and the aircraft determines how to 
maneuver based on the pilot’s instructions of where to go—thus their observations may be relevant for modeling a 
UAS pilot. 

Another resource that informed the development of a pilot model was flight regulations, which describe how pilots 
should react in some circumstances to ensure a complementary maneuver for both aircraft in a conflict. The Federal 
Aviation Regulations, 14 CFR Section 91.113 [8], describes right-of-way rules for aircraft and how they should 
maneuver to avoid one another, with right-hand turns encouraged. If the goal of the UAS pilot is to avoid loss of well 
clear, one must ask whether maneuvers to achieve that goal are covered by the right-of-way conditions in the FAR. 
The rules are simple, but the studies above found little preference for right-hand turns regardless of the general 
applicability of these rules. In addition, the final clause in the section, “unless well clear,” introduces ambiguity into 
the rules because “well clear” is subjective and could depend on the context of the (non-critical) situation.  

Due to the limited data on the behavior of UAS pilots, two studies were conducted to support model development: 
first, a comprehensive survey eliciting feedback from pilots on their preferences for decision making regarding 
maneuvering to avoid traffic, the goal of which was to qualitatively inform an initial structure for the model; second, 
a human-in-the-loop experiment which examined how pilots actually responded when confronted with various traffic 
situations. The data collected during the second study is being used to update the model structure and to characterize 
variability in the decision parameters. 

One of the main limitations of prior studies was sample size. To maximize the number of participants in the 
experiment, while being cognizant of the limited availability of UAS pilots, a low-fidelity “desktop” simulator was 
selected that was easy to transport, thereby allowing the simulation to be brought to the pilots. 

A second limitation observed in the literature was a tendency for homogenous populations—for practical reasons, 
often groups of aviation students from a single flight school. Previous studies [9] suggest that maneuver preferences 
depend on the type of UAS the pilot operates, perhaps due to the dynamic limitations of that particular aircraft or 
procedures reinforced in flight training for that aircraft. To capture responses from a variety of UAS pilots, a 
population was selected that includes individuals with experience flying a range of medium to large UAS (such as 
Predator, Reaper and Global Hawk).  

                                                           
5 The FAA regulations encourage right-hand turns, specifically for converging aircraft “When aircraft of the same 
category are converging at approximately the same altitude (except head-on, or nearly so), the aircraft to the other's 
right has the right-of-way, for head-on approaches “When aircraft are approaching each other head-on, or nearly so, 
each pilot of each aircraft shall alter course to the right” and for overtakes “ach aircraft that is being overtaken has the 
right-of-way and each pilot of an overtaking aircraft shall alter course to the right to pass well clear.” Per Federal 
Aviation Regulations, 14 CFR Section 91.113. 
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II. Operational Context 
Established in 2013, RTCA SC-228 is working to develop the Minimum Operational Performance Standards 

(MOPS) for DAA equipment to be used with unmanned aircraft. The pilot model must fit within the context of the 
SC-228 DAA MOPS to be useful towards identification of system requirements. Key operational concepts of the DAA 
system from the vantage of pilot modeling are summarized here.  

The DAA MOPS currently being drafted by SC-228 describe the overall DAA system environment and clarifies 
the many interoperating components of the system. The perspective of an individual unmanned aircraft pilot is 
somewhat simpler. The pilot sits in a Ground Control Station (GCS) at a workstation including aircraft controls and a 
DAA display. The DAA display indicates air traffic in the vicinity of the unmanned aircraft as perceived by 
surveillance systems onboard the unmanned aircraft—either from cooperative systems like the Traffic Alert and 
Collision Avoidance System (TCAS) that use information broadcasted by other aircraft or from non-cooperative 
sensor systems such as primary radar that scan the surrounding airspace for other traffic. Communications between 
the pilot and the unmanned aircraft may be by direct radio link or satellite link. The pilot is also in voice 
communication with Air Traffic Control (ATC) services to coordinate any course changes.  

A. Well Clear Definition 
Fundamentally, the purpose of the DAA system is to allow an unmanned aircraft to meet the regulatory 

requirements to “see and avoid” other aircraft, by remaining “well clear” of other aircraft. UAS will “see” with 
electronic surveillance. Once aircraft is “seen,” is must be determined what constitutes well clear.  Federal regulations 
pertaining to aviation provide no specific definition of this term; it is left to the pilot’s judgement. Thus one of the first 
challenges faced in developing requirements for DAA systems was to establish a measurable, quantitative definition. 
This was accomplished by a panel of subject matter experts (as documented by Cook et al. [1]) and subsequently 
adopted by the SC-228. That definition states that aircraft are well clear if any of the following conditions are true: 

 
1) Modified-tau is greater than 35 seconds. 
2) The predicted horizontal miss distance (HMD) is greater than 4000 feet. 
3) The current vertical separation is greater than 450 feet. 

 
In this definition, modified-tau is a metric of time-to-go to the closest point of approach in the horizontal plane 

and is defined as  
 

 τmod = �

DMOD2−R2

RṘ
if R > DMOD, Ṙ ≤ 0

0 if R ≤ DMOD             
∞ if R > DMOD, Ṙ > 0

      (1) 

 
where R is the horizontal range, Ṙ is the range rate, and DMOD=4000 feet. 

If at any time all three conditions are not true, a well clear violation (WCV), also referred to as a Loss of Well 
Clear (LoWC), has occurred. 

B. Alerting 
To prompt the pilot that some action may be needed to prevent a WCV, SC-228 has adopted an alerting scheme 

that indicates conflicting air traffic with color-coded icons and, in some cases, an aural alert signal. Alert criteria are 
based on projected penetration of an alert region, defined similarly to the well clear violation region, within a certain 
look-ahead time. The alert level increases as the proximity to a WCV increases. Projected ownship and intruder states 
are found by constant velocity extrapolation of the current state. The alerting scheme used in this study is summarized 
in Table 1. Note that SC-228 has continued to evolve the alerting scheme in the time since this experiment was 
conducted; in particular, the proximate traffic advisory has been eliminated and the threshold values have been revised. 

Alerting also factors into the concept of operations. Ordinarily the pilot of the UAS is required to clear any 
maneuvers off-course with ATC; however, under a Warning Alert pilots are permitted to maneuver without prior ATC 
approval. 

 

C. Display Requirements 
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A pilot in the cockpit relies on his or her eyes, communication with ATC, and perhaps supported by a cockpit 
traffic display to see and avoid other air traffic. For the pilot of an unmanned system, electronic surveillance replaces 
eyes and the traffic display becomes the primary view of nearby air traffic. As defined by SC-228, traffic displays can 
be grouped into three categories depending on the amount and type of information shown and the level of decision 
support offered. The most basic display is termed an informative display—it shows air traffic on a map and provides 
basic information about each aircraft like airspeed, vertical rate, and call sign. It provides no explicit maneuver 

guidance to the pilot. A suggestive display adds to this some indication of a range of possible maneuvers to avoid a 
conflict. Finally, a directive display gives the pilot a specific maneuver to resolve a conflict (e.g., a resolution advisory 
(RA) from TCAS).  

To determine the display type needed for DAA systems, a series of human-in-the-loop experiments were conducted 
for SC-228 (separate from the experiment described here) examining how well pilots could stay well clear while using 
various display concepts [10,11]. These experiments demonstrated that pilots were best able to maintain separation if 
the display indicated safe maneuver choices (the suggestive displays) than if shown only traffic information. In light 
of these findings, SC-228 adopted suggestive guidance as a minimum requirement for a DAA system. 

III. Pilot Survey 
The first step in identifying how unmanned aircraft pilots would respond in air traffic situations was to conduct 

interviews. A survey was developed with a total of 25 questions in several formats (e.g., multiple choice, agree-
disagree, free response) to probe various aspects of the maneuver decision to include what sources of information they 
rely upon, what their first choice of maneuver direction would be, how far in advance of the conflict they prefer to 
maneuver, and how they interact with ATC. The survey began by explaining the quantitative well clear definition and 
other terms. The respondents were instructed to answer the questions as though they were flying an unmanned aircraft 
in the NAS under instrument flight rules (IFR), in radio communications with ATC, and with a traffic display 
highlighting traffic within 80 seconds of a well clear violation.  

The survey was distributed to military unmanned aircraft pilots, and a total of 23 responses were received. The 
following summarizes noteworthy results: 

 
• Most pilots typically assessed potential conflicts by distance to point of closest approach rather than time. 
• When contacting ATC to coordinate a maneuver, most request a specific heading or a specific altitude rather 

than just a maneuver direction. 

Table 1. Alerting scheme used to warn study subjects of nearby air traffic. 

Alert 
Level Alert Type/Criteria Aural 

Alert Symbol 

0 None None 
 

1 

Proximate Traffic Advisory 
• 85-second look-ahead time 
• 35-second modified tau 
• 1.5-nm HMD/DMOD, 1200-ft vertical 

separation 

None 
 

2 
Preventive Alert 

• 75-second look-ahead time 
• 35-second modified tau 
• 1-nm HMD/DMOD, 700-ft vertical separation 

Tone 
 

3 

Corrective Alert 
• 75-second look-ahead time 
• 35-second modified tau 
• 0.75-nm HMD/DMOD, 450-ft vertical 

separation 

Tone 
 

4 

Warning Alert 
• 25-second look-ahead time 
• 35-second modified tau 
     

 

Tone 
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• Time to closest point of approach, distance to closest point of approach, and vertical separation were 
identified as the most useful information for deciding when to maneuver. 

• Distance to closest point of approach, vertical separation, and ATC clearance were identified as the most 
useful information for deciding how to maneuver. 

• If encountering traffic while climbing or descending, most preferred to level off to avoid a conflict. 
• If encountering traffic while in level flight, a slight majority (60%) preferred to avoid the conflict by turning. 

IV. Human-in-the-Loop Experiment 
The stated preferences collected with the Pilot Model Survey were useful towards establishing a general 

architecture of the pilot model.  However, to actually parameterize the model, quantifiable revealed preferences were 
collected through a Human-in-the-Loop (HITL) experiment in which pilot subjects were asked to fly a generic 
unmanned aircraft in a simulator and maneuver to avoid nearby air traffic. 

A. Basic Assumpions 
To be consistent with the SC-228 concept of operations and minimum requirements, a display with suggestive 

guidance was used to inform the UAS pilots’ decision making with ATC providing clearance of maneuver requests. 
Pilots were informed that all encounters would be one-on-one, at altitudes below 10,000 feet, and that the intruder was 
noncooperative (i.e., flying without a transponder turned on and not communicating with ATC). 

B. Simulator 
The experiment was conducted using a portable aircraft encounter simulator and pilot workstation provided by the 

U.S. Air Force Simulation and Analysis Facility (SIMAF). The pilot interface is built around SIMAF’s simulation 
software of the dynamic response of the ownship aircraft to pilot command inputs. Without intervention from the 
pilot, the ownship follows a predetermined flight path. The intruder aircraft and all background traffic follow 
predetermined trajectories. 

The pilot workstation comprised two monitors, shown in Figure 1, a keyboard and a mouse. The left-hand monitor 
showed a moving map and the Primary Flight Display (PFD) with the aircraft’s attitude, heading, altitude, and speed. 
The pilot’s ATC communication controls and ability to declare all clear (i.e., end the simulation) were also found on 
the PFD. The right-hand monitor, the DAA display, showed nearby traffic and suggestive guidance.  

Several pilot aids, consistent with SC-228 requirements (as of March 2015), were incorporated in the interface to 
help the participant negotiate traffic in the experiment. First, a succession of visual and aural alerts was used to warn 
pilots of nearby aircraft that may cause a well clear violation. The alert levels and the conditions that trigger them 
were summarized earlier in Table 1.  

In addition to alerts, the Omni Bands suggestive guidance algorithm, part of the Java Architecture for DAA 
Modeling (JADEM) software suite developed at NASA Ames Research Center and provided by NASA for this study 
[12], was used to display the predicted alert level if the pilot were to turn, climb, or descend—in other words, to 
suggest maneuver alternatives that the pilot could employ to resolve the conflict. The same suggestive guidance was 

  
Figure 1. Multifunction (left) and Detect and Avoid (right) display comprising the UAS pilot’s workstation 
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used as one of the concept displays in the NASA Part Task 5 (PT5) experiment as described by Rorie et al. [10]. 
NASA’s experiment showed that pilots were more successful at avoiding well clear violations when given suggestive 
guidance. This finding led to the SC-228 decision that suggestive guidance be a minimum requirement for DAA 
displays noted above.  

Omni Bands heading suggestions took the form of one or more colored arcs (“bands”) on the traffic display’s 
compass rose and an altitude tape to the right of the compass rose. The “Fly/No Fly” bands were colored-coded to 
indicate the threat level severity given a particular heading, as shown in Table 2. For example, a green band meant 
that flying that heading would not lead to any alerts (preventive, corrective or warning). Unlike directive guidance 
from systems such as TCAS, the pilot was not required to follow suggestive guidance; it was intended to help the pilot 
with decision-making. Take note in the table of a difference between the heading bands and altitude bands: a predicted 
preventive-level alert is colored dashed-yellow in heading but green in altitude. 

Suggestive guidance for the vertical plane was shown with a column of colored bands on the right side of the 
traffic display. Each band corresponds to altitudes above and below the ownship’s current altitude in increments of 
five hundred feet. See Figure 2 for an example of the Omni Bands suggestive guidance from our DAA display. 

Maneuvers were commanded by entering the desired heading and/or altitude in text boxes on the PFD and clicking 
an ‘execute maneuver’ button—similar to the strategic route planner mentioned previously. Pilots could choose a 
horizontal maneuver, a vertical maneuver, or both and were permitted to make as many successive maneuvers as 

desired. Horizontal maneuvers were executed at 3°/s and vertical maneuvers at 500 fpm with a generic ownship 
dynamic model, consistent with the SC-228 assumptions. 

Pilots were trained to coordinate with ATC prior to maneuvering if possible via simulated ATC interaction. When 
ready to maneuver, the pilot clicked a button on the PFD, and after a delay drawn randomly from a gamma distribution 
with mean 11 seconds (fit to ATC coordination times from NASA’s PT5 experiment) a message was displayed 
indicating that the pilot may proceed. There was no voice communications and all maneuver requests were approved. 
Flight controls were not disabled during this delay, so the pilot was able to command maneuvers before receiving 
authorization.  

Table 2. Omni Bands suggestive guidance color-coding. 

Alert Level Color 
Heading Bands Altitude Bands 

0 – None Green Green 
1 – Proximate Traffic Advisory Green Green 
2 – Preventive Alert Dashed Yellow Green 
3 – Corrective Alert Yellow Yellow 
4 – Warning Alert Red Red 

 

 

 
 

Figure 2. Heading bands shown on inner range ring (left) and altitude bands (right).  
In this example, pilot can turn right >5° to be alert free, descend to 2,000 ft. to be 
alert free, or maintain course or turn left >60° for a preventive alert 
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C. Encounters 
Twenty-two single intruder encounters were selected from a larger set generated using the MIT Lincoln Laboratory 

developed uncorrelated encounter model [13] for evaluation of a preliminary pilot model. The UAS was assumed to 
be on an IFR flight plan heading due north in all encounters. All encounters occurred in Class E airspace below 10,000 
feet with a noncooperative intruder: i.e., one whose maneuvers were not coordinated with Air Traffic Control or the 
UAS pilot. Eighteen encounters included a nonmaneuvering intruder; the remaining four encounters included scripted 
maneuvers by the intruder. Encounter types included head-on, converging (horizontally and/or vertically), and 
ownship overtaking. All encounters included one or more alerts; however, three encounters require no pilot input to 
remain well clear. Encounters began when the two aircraft were 10 nautical miles apart, which was usually well ahead 
of the earliest alert. Depending on encounter geometry, encounters lasted from two to eight minutes.  

Scripted background traffic was included in the encounters to force the pilots to identify the threatening traffic. 
However, because the model is intended for single intruder encounters, the background traffic was far enough away 
from the encounter of interest that it was unlikely to influence the pilot’s maneuver decisions.  

D. Procedures 
The experiment was conducted one pilot at a time. Each test commenced with a training briefing to explain the 

controls, display, operational procedures (e.g., coordinating maneuvers with ATC) and the objective of avoiding well 
clear violations while minimizing course deviations. After the training briefing, the pilot was guided through several 
training encounters for hands-on familiarization with the displays and controls before beginning the test. 

To explore the relationship between alerts and a pilot’s decision to maneuver, the test encounters for each pilot 
were divided into two equal blocks. In one block of encounters, pilots were to maneuver only after an alert. In the 
other block of encounters, pilots were free to maneuver at will: that is, at their discretion and best judgment without 
having to wait for an alert. Pilots were unaware of whether they would be maneuvering at will or waiting for an alert 
until just prior to the encounter block being introduced and trained. The order of the blocks, the encounters contained 
in each block, and the order of the encounters within each block were varied from pilot to pilot to preclude any 
potentially confounding training effects. For flexibility, the runs were balanced for groups of six pilots. The total test 
time, including training, each block of encounters with a break in between, and a brief post-test survey, was 
approximately 2.5 hours. 

E. Test Subjects 
A relatively heterogeneous group of 26 test subjects were recruited for the study. All test subjects were current or 

recent UAS pilots from the following duty stations:  
 
• Eight from Edwards Air Force Base 
• Four from Beale Air Force Base 
• One from Wright-Patterson Air Force Base 
• Seven from Springfield (OH) ANG 

• Two from Grand Forks (ND) ANG 

  
Figure 3. Flying experience of UAS pilots participating in the study. 
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• Three from NASA Armstrong Flight Research Center 
• One from MIT Lincoln Laboratory 
 
Figure 3 gives a more detailed demographic breakdown of the pilots. 

V. Results 
Overall, the pilots were generally successful at remaining well clear: out of a total of 572 encounters tested, there 

were no near mid-air collisions (defined as separation of less than 500 feet horizontally and 100 feet vertically), only 
12 well clear violations. Seven of those well clear violations were a result of intruder maneuvering. Pilot feedback 
after the experiment indicated that the displays provided adequate information to maintain separation and that their 
training was sufficient.  

Figure 5 shows the recorded responses of all pilots for the first encounter. It is clear that there is significant 
variability in maneuver timing, maneuver direction, and maneuver magnitude.  

Pilots were permitted to maneuver as often as they wanted, and the data was separated into the first maneuver 
(categorized as the initial maneuver) and any subsequent maneuvers (categorized as update maneuvers). Pilots 
executed a total of 838 maneuvers throughout the test. There was at least one maneuver in every case, so there were 
572 initial maneuvers and 266 update maneuvers. 

Pilots almost universally complied with instructions to coordinate their traffic avoidance maneuvers with ATC. 

A. Maneuver Timing 
The maneuver timing results indicated a 

marked difference in the pilot’s decision of when 
to maneuver between the two conditions, wait 
for an alert versus maneuver at will. Given the 
freedom to do so, as shown in Figure 4, the pilots 
frequently maneuvered away from the intruding 
traffic before an alert. In 62% of “maneuver at 
will” encounters the initial maneuver occurred 
before the first aural alert (preventive or 
corrective alert, depending on the encounter). 
We concluded that, lacking any disincentive, 
pilots would generally prefer to maneuver upon 
identifying a potential conflict with another 
aircraft whether or not an alert has been issued. 

Among encounters with the initial maneuver 
after the first aural alert, the average time from 
the alert until the pilot contacted ATC was 6.2 
seconds. Examining the response times by 
encounter revealed that responses were typically 
slower in encounters in which the ownship 
and/or intruder was climbing or descending. The 
average response time in those encounters was 
8.6 seconds while the average response time for 
encounters with level ownship and intruder was 
about half that at 4.4 seconds, a significant 
difference with p<0.01.  

Since pilots maneuvered in every encounter, 
we could not determine the encounter 
characteristics motivating a decision not to 
maneuver.  

B. Maneuver Direction  
Figure 5. Ensemble of pilot responses to encounter #1. 
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Figure 4. Alert level at initial maneuver over all 
encounters. 

Alert Level at Initial Maneuver

0 1 2 3 4

N
um

be
r o

f O
cc

ur
en

ce
s

0

50

100

150

200

250

300

350
Frequency of Maneuvers by Alert Level

Maneuver At Will

Wait For Alert



  
 

For public release. Distrubution A. Approved for public release: unlimited distribution. 

9 

Figure 6 shows the overall breakdown of 
maneuver choices by maneuver plane, revealing that 
multi-axis maneuvers (‘combo’) were substantially 
less common than horizontal or vertical single-axis 
maneuvers, consistent with earlier studies noted 
above. Breaking these results down further, one key 
finding is a clear distinction between the initial 
maneuvers selected prior to alert and the initial 
maneuvers that occurred after alert: the former group 
showed much greater preference for vertical 
maneuvers. The latter group instead showed 
statistically significant preference for horizontal 
maneuvers over vertical maneuvers (p<0.01)—see 
Figure 7. Furthermore, there was a significantly 
greater preference for multi-axis maneuvers when the 
initial maneuver occurred after alert. Figure 8 
compares maneuver preferences for initial maneuvers 
with those for update maneuvers over all encounters. 
Grouped this way, a marked preference for turns in update maneuvers is evident while there is not a significant 
preference for initial maneuvers. We expect this relates to the dynamic capabilities of the ownship—when close to 
well clear violation, its low maximum vertical rate make horizontal maneuvers more efficacious. Of further note in 
Figure 8, multi-axis maneuvers were rarely used for updates. 

 
Among vertical maneuvers, there was a strong preference for climbs over descents (p<0.01). However, the 

encounter geometry may play a role in that bias because the intruder is level with or below the ownship in all but one 
of the level-level encounters and in many of the encounters the ownship’s altitude is 3000 feet. Since the pilots were 
experienced at flying UAS to much higher altitudes it is possible that this was their preference and they were wary of 
descending too low for traffic avoidance.  

Among all of the horizontal maneuvers, there was a small but statistically significant preference (p<0.03) for left 
turns over right. This preference is surprising because the right-of-way rules generally favor right-hand turns. Of 
particular note, the pilots in this experiment strongly favored left-hand turns in head-on encounters, turning to the right 
per the right-of-way rules in only 29.6% of those encounters. We believe this has to do with the particular encounter 
geometries faced by the pilots. Encounters were categorized as head-on when the bearing of the intruder was within 
10° of the ownship’s heading and the bearing of the ownship was within 10° of the intruder’s heading. All of the so-
designated encounters were slightly skewed and not directly head-on (i.e., opposite headings on collision course). 
Consequently, pilots may have mentally projected the intruder’s trajectory forward and found that turning to the left 
was safer than to the right. It is not certain whether the pilots considered the right-of-way rules in reaching a decision. 
(The pilots were not explicitly instructed to follow right-of-way rules.) 

  
Figure 7. Maneuver plane preferences for initial maneuvers executed before an alert (left, N=186) and after 
an alert (right, N=386). 
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Figure 6. Overall maneuver direction choices 
(N=838). 
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We also observed that the direction of maneuver per axis correlates well with the Omni Bands suggestions. When 

pilots did turn, about 75% of the time it was in the direction of the smaller maneuver suggested by Omni Bands (e.g., 
left if green is displayed for headings greater than 30° to the left and 45° to the right). 

 

C. Maneuver Magnitude 
Figure 5 displayed the wide range of maneuver magnitudes selected by the pilots to just one encounter. Examining 

maneuver magnitudes across all encounters revealed no discernable pattern. However, plotting the maneuver 
magnitude choices relative to the smallest maneuver suggested by Omni Bands in the direction of the maneuver reveals 
a gamma-like distribution (see Figure 9). Pilots usually selected maneuvers 10-30° or 500–1000 ft larger than the 
Omni Bands suggestion, but in the distribution tails we see evidence of the abundantly cautious and the overly 
aggressive pilots alluded to in Section 1.1. In fact, some of the maneuvers selected were smaller than the Omni Bands 
suggestion. There are several potential explanations for this. First, the pilot may have simply misread the guidance. 
This is mostly likely for horizontal maneuvers as the suggestions are given in 1° increments but the compass is 
graduated in 45° increments (see Figure 2). Second, the guidance may have changed between when the pilot selected 
his maneuver and when it was executed. Third, the pilot may not have been actively using the suggestive guidance. 
This is more likely for vertical maneuvers as the guidance is shown on the side of the DAA display; in fact, several 
pilots noted that it was hard to see the altitude bands when they were focused on the ownship and intruder tracks 
shown towards the center of the display. Finally, the horizontal extent of the alert region is larger than the extent of 
the WCV region (0.75 nm vs. 0.66 nm), so a pilot could choose to maneuver to a heading that will result in an alert 
but not a WCV. 

  
Figure 8. Maneuvering plane preferences for initial maneuvers (left, N=572) and update maneuvers (right, 
N=266). 
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Figure 9. Maneuver magnitudes selected relative to the magnitude of the smallest OmniBands suggestion. 
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D. Post-test Survey 
At the end of all trials, each pilot participant completed a brief post-test survey. The primary purpose of the survey 

was to ensure the validity of the data collected. In fact, the pilots reported almost unanimous strong agreement to 
questions about whether they had the training and the information to be able to maintain separation and minimize 
course deviations. However, a question about whether their strategy was affected by having to wait for an alert before 
maneuvering elicited varied responses. This presents a challenge determining the appropriate triggering mechanism 
for the pilot model, and it suggests a conflict that must be addressed in a final concept of operations. Many pilots also 
responded that they felt the suggestive guidance had not strongly influenced their decision-making, while above we 
noted a compelling correlation between the actual responses and the suggestive guidance.  

VI. Future Work 
This dataset will form the foundation of an empirically based stochastic operator model. Immediate modeling goals 

are to update an existing heuristic model with preferences observed in the data; in the longer run, machine learning 
techniques will be employed to more fully explore the dataset and identify correlations between encounter features 
and pilot decisions. 

Further HITL experimentation is planned to enhance fidelity and focus on particular situations of interest. 
Additional situational features that may influence pilot behavior will be considered including: 

 
• Imperfect surveillance. 
• More extensively maneuvering intruders. 
• More realistic procedures (e.g., requiring a return to course). 
• Differing ownship dynamic capabilities representing specific UAS (e.g., Predator vs. Global Hawk). 

VII. Conclusion 
This HITL experiment provided a rich set of data from which to build a model of unmanned aircraft pilots’ 

responses to nearby air traffic. The experiment has identified several characteristics of UAS pilot responses that might 
be considered for that model. First, pilots seeing a conflict coming would prefer to maneuver even earlier than the 
alert timeline used in the experiment. Second, pilots responding before an alert when guidance was displayed prefer 
to maneuver in the vertical plane while those closer to the conflict tend to pick either a horizontal maneuver or a 
horizontal/vertical combination maneuver. Third, response time slows when the ownship and/or intruder is climbing 
or descending. The data collected provides evidence of pilot response under many encounter conditions; however, 
further experimentation is necessary for more definitive answers to some questions. In particular, more work is 
required to probe pilot responses when they are very close to a well clear violation. 

It is important to note that few pilots of unmanned aircraft have experience with UAS DAA systems or contending 
with other air traffic because UAS operations in the NAS are currently authorized by special exception only. The 
responses recorded in this experiment are thus responses to an unfamiliar task. UAS pilot behavior may evolve as 
operation of UAS in the NAS becomes more common, and DAA systems are fielded with new policies, procedures, 
and training.  
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